Derivation of the Boltzmann Distribution

The Boltzmann distribution describes the probability of a system being in a particular energy state EiE_i at thermal equilibrium. It arises from statistical mechanics by maximizing entropy subject to constraints.

1. Entropy and Probability Distribution

The entropy SS of a system is defined as:

S=kBipilnpiS = -k_B \sum_i p_i \ln p_i

where:

2. Constraints

Two constraints are imposed:

  1. Probabilities must sum to 1: ipi=1\sum_i p_i = 1

This ensures the probabilities pip_i form a valid distribution. Without this, the solution wouldn’t represent meaningful probabilities for the system's states.

  1. Energy conservation: E=constant=ipiEi\langle E \rangle = \textnormal{constant} = \sum_i p_i E_i where EiE_i is the energy of state ii. This constraint ensures that while individual particles may exchange energy, the total energy across all particles in the system remains constant.

3. Maximizing Entropy

To find the probability distribution {pi}\{p_i\}, maximize the entropy SS under the constraints using the method of Lagrange multipliers. Define the function:

L=kBipilnpi+α(ipi1)+β(ipiEiE)\mathcal{L} = -k_B \sum_i p_i \ln p_i + \alpha \left( \sum_i p_i - 1 \right) + \beta \left( \sum_i p_i E_i - \langle E \rangle \right)

where α\alpha and β\beta are Lagrange multipliers.

4. Solving the Optimization Problem

Take the derivative of L\mathcal{L} with respect to pip_i:

Lpi=kB(1+lnpi)+α+βEi\frac{\partial \mathcal{L}}{\partial p_i} = -k_B (1 + \ln p_i) + \alpha + \beta E_i

Set Lpi=0\frac{\partial \mathcal{L}}{\partial p_i} = 0:

kB(1+lnpi)+α+βEi=0-k_B (1 + \ln p_i) + \alpha + \beta E_i = 0

Simplify to express pip_i:

lnpi=αkBβEikB1\ln p_i = -\frac{\alpha}{k_B} - \frac{\beta E_i}{k_B} - 1

Exponentiate both sides:

pi=exp(αkB1)exp(βEikB)p_i = \exp\left(-\frac{\alpha}{k_B} - 1\right) \exp\left(-\frac{\beta E_i}{k_B}\right)

Define Z=exp(αkB1)Z = \exp\left(-\frac{\alpha}{k_B} - 1\right), known as the partition function:

Z=iexp(βEikB)Z = \sum_i \exp\left(-\frac{\beta E_i}{k_B}\right)

Thus:

pi=exp(βEikB)Zp_i = \frac{\exp\left(-\frac{\beta E_i}{k_B}\right)}{Z}

5. Interpretation of Parameters

6. Final Result

The Boltzmann distribution is:

pi=exp(EikBT)iexp(EikBT)p_i = \frac{\exp\left(-\frac{E_i}{k_B T}\right)}{\sum_i \exp\left(-\frac{E_i}{k_B T}\right)}

This describes the probability of the system occupying the energy state EiE_i at temperature TT.