Primer on Linear Algebra for Quantum

This primer is based on Chapter 2 of Nielsen and Chuang's book Quantum Computation and Quantum Information. It covers concepts in linear algebra that are essential for understanding quantum mechanics and quantum computing.

1. Bases and Linear Independence

A set of vectors {v1,v2,,vn}\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \} in a vector space VV is said to be linearly independent if no vector in the set can be written as a linear combination of the others:

c1v1+c2v2++cnvn=0ci=0 for all i.c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = 0 \quad \Rightarrow \quad c_i = 0 \text{ for all } i.

A basis is a linearly independent set of vectors that spans the entire vector space. Every vector in the space can be uniquely expressed as a linear combination of basis vectors.

2. Linear Operators and Matrices

A linear operator AA on a vector space satisfies:

A(αv+βw)=αAv+βAw,v,wV,α,βC.A(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha A\mathbf{v} + \beta A\mathbf{w}, \quad \forall \mathbf{v}, \mathbf{w} \in V, \alpha, \beta \in \mathbb{C}.

In finite dimensions, linear operators can be represented as matrices acting on column vectors.

3. Inner Products

An inner product vw\langle \mathbf{v} | \mathbf{w} \rangle defines a notion of length and angle in vector spaces. It satisfies:

  1. Conjugate symmetry: vw=wv\langle \mathbf{v} | \mathbf{w} \rangle = \overline{\langle \mathbf{w} | \mathbf{v} \rangle}
  2. Linearity: v(aw+bu)=avw+bvu\langle \mathbf{v} | (a \mathbf{w} + b \mathbf{u}) \rangle = a \langle \mathbf{v} | \mathbf{w} \rangle + b \langle \mathbf{v} | \mathbf{u} \rangle
  3. Positivity: vv0\langle \mathbf{v} | \mathbf{v} \rangle \geq 0 with equality only if v=0\mathbf{v} = 0.

For quantum mechanics, the standard inner product in Hilbert space is:

ψϕ=iψiϕi.\langle \psi | \phi \rangle = \sum_i \overline{\psi_i} \phi_i.

4. Eigenvalues and Eigenvectors

For a linear operator AA, an eigenvector v\mathbf{v} satisfies:

Av=λv,A \mathbf{v} = \lambda \mathbf{v},

where λ\lambda is the eigenvalue. The set of all eigenvalues of AA is called the spectrum of AA.

5. Adjoints and Hermitian Operators

The adjoint (or Hermitian conjugate) AA^\dagger of a matrix AA is defined such that:

Avw=vAw.\langle A \mathbf{v} | \mathbf{w} \rangle = \langle \mathbf{v} | A^\dagger \mathbf{w} \rangle.

A matrix is Hermitian if A=AA = A^\dagger, meaning its eigenvalues are always real.

6. Tensor (Outer) Products

The tensor product of two vectors v\mathbf{v} and w\mathbf{w} produces a larger-dimensional vector:

ψϕ=[ψ1ϕ1ψ1ϕ2ψmϕn].|\psi\rangle \otimes |\phi\rangle = \begin{bmatrix} \psi_1 \phi_1 \\ \psi_1 \phi_2 \\ \vdots \\ \psi_m \phi_n \end{bmatrix}.

This is fundamental in quantum mechanics for describing composite systems.

6.1 Spectral Decomposition Theorem

Any Hermitian operator AA can be decomposed as:

A=iλiψiψi,A = \sum_i \lambda_i |\psi_i\rangle \langle \psi_i |,

where λi\lambda_i are the eigenvalues, and ψi|\psi_i\rangle are the corresponding eigenvectors.

7. Operator Functions

Functions of an operator f(A)f(A) can be defined using its spectral decomposition:

f(A)=if(λi)ψiψi.f(A) = \sum_i f(\lambda_i) |\psi_i\rangle \langle \psi_i |.

This is useful for defining matrix exponentials and other functions in quantum mechanics.

8. Commutator and Anti-Commutator

The commutator measures the non-commutativity of two operators:

[A,B]=ABBA.[A, B] = AB - BA.

In quantum mechanics, nonzero commutators indicate fundamental uncertainty relationships (e.g., position and momentum).

The anti-commutator is defined as:

{A,B}=AB+BA.\{A, B\} = AB + BA.

9. Polar and Singular Value Decomposition

Definitions of Terms

This primer provides a foundation for understanding the mathematical framework behind quantum computing and quantum mechanics.