Primer on Logarithms

Logarithms are the "inverse of exponentiation." If you’ve ever wondered “what power of a number produces another number?”, you’re working with logarithms. This primer introduces logarithms, explains their properties, and proves those properties step by step.

What is a Logarithm?

The logarithm answers the question:
"To what power must the base be raised to produce a given number?"

Mathematically:

logb(x)=ymeansby=x\log_b(x) = y \quad \text{means} \quad b^y = x

Example:

log2(8)=3\log_2(8) = 3 because 23=82^3 = 8.

Key Properties of Logarithms

Logarithms simplify complex operations. Below are the fundamental properties, along with proofs.

1. Product Rule

logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)

Proof:

  1. Let logb(x)=p\log_b(x) = p and logb(y)=q\log_b(y) = q. By the definition of logarithms: bp=xandbq=yb^p = x \quad \text{and} \quad b^q = y
  2. The product xyxy is: xy=bpbqxy = b^p \cdot b^q
  3. By the laws of exponents, bpbq=bp+qb^p \cdot b^q = b^{p+q}, so: xy=bp+qxy = b^{p+q}
  4. Take logb\log_b of both sides: logb(xy)=logb(bp+q)\log_b(xy) = \log_b(b^{p+q})
  5. By the property logb(bk)=k\log_b(b^k) = k, we get: logb(xy)=p+q\log_b(xy) = p + q
  6. Substitute back p=logb(x)p = \log_b(x) and q=logb(y)q = \log_b(y): logb(xy)=logb(x)+logb(y)\log_b(xy) = \log_b(x) + \log_b(y)

2. Quotient Rule

logb(xy)=logb(x)logb(y)\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)

Proof:

  1. Let logb(x)=p\log_b(x) = p and logb(y)=q\log_b(y) = q. By the definition of logarithms: bp=xandbq=yb^p = x \quad \text{and} \quad b^q = y
  2. The quotient xy\frac{x}{y} is: xy=bpbq\frac{x}{y} = \frac{b^p}{b^q}
  3. By the laws of exponents, bpbq=bpq\frac{b^p}{b^q} = b^{p-q}, so: xy=bpq\frac{x}{y} = b^{p-q}
  4. Take logb\log_b of both sides: logb(xy)=logb(bpq)\log_b\left(\frac{x}{y}\right) = \log_b(b^{p-q})
  5. By the property logb(bk)=k\log_b(b^k) = k, we get: logb(xy)=pq\log_b\left(\frac{x}{y}\right) = p - q
  6. Substitute back p=logb(x)p = \log_b(x) and q=logb(y)q = \log_b(y): logb(xy)=logb(x)logb(y)\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)

3. Power Rule

logb(xk)=klogb(x)\log_b(x^k) = k \cdot \log_b(x)

Proof:

  1. Let logb(x)=p\log_b(x) = p. By the definition of logarithms: bp=xb^p = x
  2. Raise both sides to the power kk: (bp)k=xk(b^p)^k = x^k
  3. By the laws of exponents, (bp)k=bpk(b^p)^k = b^{pk}, so: xk=bpkx^k = b^{pk}
  4. Take logb\log_b of both sides: logb(xk)=logb(bpk)\log_b(x^k) = \log_b(b^{pk})
  5. By the property logb(bk)=k\log_b(b^k) = k, we get: logb(xk)=pk\log_b(x^k) = pk
  6. Substitute back p=logb(x)p = \log_b(x): logb(xk)=klogb(x)\log_b(x^k) = k \cdot \log_b(x)

4. Change of Base Formula

logb(x)=logk(x)logk(b)\log_b(x) = \frac{\log_k(x)}{\log_k(b)}

Proof:

  1. Let logb(x)=p\log_b(x) = p. By the definition of logarithms: bp=xb^p = x
  2. Take logk\log_k of both sides (using a new base kk): logk(bp)=logk(x)\log_k(b^p) = \log_k(x)
  3. By the power rule, logk(bp)=plogk(b)\log_k(b^p) = p \cdot \log_k(b): plogk(b)=logk(x)p \cdot \log_k(b) = \log_k(x)
  4. Solve for pp: p=logk(x)logk(b)p = \frac{\log_k(x)}{\log_k(b)}
  5. Recall that p=logb(x)p = \log_b(x), so: logb(x)=logk(x)logk(b)\log_b(x) = \frac{\log_k(x)}{\log_k(b)}

Applications of Logarithms

Logarithms have widespread applications:

Quick Practice Problems

  1. Prove logb(1)=0\log_b(1) = 0.
  2. Simplify log2(16)\log_2(16).
  3. Solve for xx: 10log(x)=100010^{\log(x)} = 1000.